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Using a simple three-layer model of the ocean, we study a generation mechanism 
for the lowest internal-wave mode by nonlinear coupling to modulations of the surface- 
wave spectrum. We first examine the case of a narrow-band surface-wave spectrum, 
applying a method developed by Alber (1978) to derive a transport equation for the 
spectral density. Alber demonstrated that, when the spectral width (in the main wave 
direction) exceeds some critical value, the spectrum is stable against modulational 
perturbation (i.e. the Benjamin-Fejr-type instability is suppressed). We show, how- 
ever, that, for a stratified ocean, a modulational instability may persist because of a 
coupling between a 'modulational mode' of the surface-wave spectrum and an 
internal wave. The growth rate is calculated for a simple model of the angular distri- 
bution of the spectrum. It turns out that an important parameter is ((Vc)z))lA6', the 
ratio between the averaged square of the wave steepness, and the angular width of 
the spectrum. 

For appreciable growth one must have roughly 

2 x S kd ((V[)2)/A6', 

where k is a characteristic wavenumber for the surface-wave spectrum, and d is 
the depth of the thermocline (50-100 m). This condition is probably too limiting for 
the above-mentioned modulational instability to be of any practical interest in the 
oceans. 

We also consider the broad-band case of modulational interaction, and show the 
connection with incoherent three-wave interactions. 

1. Introduction 
In  recent years a number of interesting papers have appeared on nonlinear 

interaction of surface waves with internal waves. The possibility that some such 
interaction may play a major part in maintaining the observed spectrum of internal 
waves in the oceans, still seems to be open (see Thorpe (1975) for a review on this 
topic). 

The suggested mechanisms for nonlinear interaction seem to fall into three cate- 
gories : 

(a) coherent three-wave interactions; 
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( b )  incoherent (or statistical) three-wave interactions; 
(c) modulational interactions. 
Theoretical models for (a )  with two surface waves interacting with an internal 

wave, have been developed by Ball (1964), Thorpe (1966), Nesterov (1972), Rre- 
khovskikh et al. (1972), and others. Tank experiments have been reported by Lewis, 
Lake & KO (1974), and Joyce (1974). A more recent paper by Watson, West & Cohen 
(1976) has investigated ( a )  for a fairly realistic ocean model. They take into account 
a discretized representation of a surface-wave spectrum. They do, however, stick to 
the coherent interaction model in the sense that each surface-wave pair participat- 
ing in a resonant trio (with an internal wave) has a perfectly deterministic phase 
relationship. 

A theoretical model for ( b )  seems to have been first put forward by Hasselmann 
(1966, 1967) in a quite general form. A more detailed study of energy transfer from a 
swell spectrum to the lowest internal-wave mode in shallow water was reported by 
Kenyon (1968). Recently Olbers & Herterich (1979) have reported a rather compre- 
hensive study of ( b )  for deep water, using a three-layer model of the ocean. 

While the elementary processes behind (a )  and ( b )  are more or less intuitively clear, 
(c) calls for an explanation. 

The association of internal waves and the regular banded patterns of either surface 
slicks or surface roughness, often observed in coastal waters, is well documented 
(Ewing 1950; LaFond 1962; Perry & Schimke 1965). It was pointed out by Gargett & 
Hughes (1972) and Phillips (1973) that the presence of an internal wave would tend 
to modulate a surface-wave spectrum. This is simply due to the non-uniform surface 
current induced by the internal wave, which is refracting the surface waves. It has 
also been demonstrated in a laboratory experiment by Lewis et al. (1 974). Although 
the theoretical papers mentioned above have used models where the internal wave 
(or rather the surface current induced by it) is considered to  be given, the interaction 
is of course mutual in the sense that a non-uniform surface-wave spectrum influences 
the internal wave. To see this we note that non-uniformities in the surface-wave 
spectrum introduce corresponding non-uniformities in the radiation stress (see 
Longuet-Higgins & Stewart 1964), and thus surface forces acting on the internal 
wave (see figure 1). A similar type of interaction has been demonstrated between 
surface waves and Langmuir circulation by Garrett (1  976). It follows from the descrip- 
tion of ( c )  above that it only applies to  the situation where the wavelength A, of the 
internal wave is much longer than a characteristic wavelength A, of the surface- 
wave spectrum. 

The mechanism (a )  is relatively strong, and predictions of the growth times of 
internal waves is of the order of a few hours (see Watson et al. 1976). This presupposes, 
however, that each two surface waves, mixing to  produce an internal wave, have a 
deterministic phase relationship for as long as it takes to drive up the internal wave. 
This is equivalent to a requirement that the coherence time of the surface-wave 
spectrum should be of the order of the growth time (i.e. a few hours), which seems 
to  be asking for a rather extreme situation. 

The mechanism (b)  does not rely on the assumption of a very long coherence time. 
Olbers & Herterich (1979) conclude that the interaction is of no importance for the 
deep and diffuse main thermocline of the ocean. For internal waves trapped in the 
seasonal (shallow) thermocline, however, they find a considerable coupling to the 
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surface-wave spectrum. Even for moderate surface-wave conditions, they find a 
characteristic transfer time of the order of a day. I n  extreme situations such as strong 
storms or crossing swell components of high amplitude, the time scale will be a frac- 
tion of a day. 

I n  this paper we investigate the mechanism (c) .  The most basic question in con- 
nexion with that mechanism is whether the ‘feedback loop’ it represents (as indicated 
in figure 1) is a positive one. In  other words, will both the modulation and the internal 
wave grow as a result of the interaction! The findings to  be reported here seem to 
indicate that the answer to the question is yes for quite general wave fields. We find, 
however, that the corresponding growth rate is very small indeed, except for the case 
when the angular width of the surface-wave spectrum is small enough to allow the 
existence of ‘modulational modes’ across the main direction of the wave field. The 
main effort of this paper is therefore concentrated on narrow-band spectra. 

We remark that the mechanisms ( b )  and ( c )  are not, of course, entirely different. 
It is shown in Q 6 that, in the broad-band case, the modulational effect is included in a 
treatment based on ( b )  (e.g. Olbers & Herterich 1979) in the limit A, p A,. I n  the 
narrow-band case, however, the modulational interaction cannot be described in the 
framework of incoherent three-wave interactions, due to the existence of modulational 
modes. 

Since the nonlinear coupling between surface waves and internal waves seems to 
be most significant for the lowest internal mode, we have concentrated on this mode, 
choosing a simple three-layer model of the ocean, with a shallow thermocline region 
of varying density separating homogeneous regions above and below. Our model 
thus corresponds to the seasonal (shallow) thermocline. 

The plan of this paper is as follows. In  3 2 we introduce the basic assumptions and 
equations. I n  Q 3 we use a method developed by Alber (1978) to derive transport equa- 
tions for the two-point correlation function and the spectral density of surface waves. 

In  $ 4  we investigate the stability of a homogeneous distribution of the surface- 
wave spectrum to small-amplitude disturbances. These disturbances are shown to 
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consist of two weakly coupled modes: a modulational mode and an internal-wave 
mode (the lowest internal mode). The modulational mode is shown to be identical to 
that studied by Alber (1978). As pointed out by him, this mode goes unstable when 
the width of the surface-wave spectrum is less than some critical value. For spectral 
widths larger than the critical, the modulational mode is generally damped by phase 
mixing. A simple example of spectra supporting undamped modulational modes 
is given. 

In § 5 mode coupling is considered between a modulational mode and an internal 
wave. It is shown that, when a certain resonance condition is satisfied, an instability 
develops. For a simple model of the angular distribution of the surface-wave spectrum 
which allows explicit calculations, it is shown that the conditions for instability can 
always be satisfied. For the same model we calculate the growth rate, and give some 
numerical examples. 

In  3 6 we consider the case of a broad-band spectrum of surface waves. We choose 
a simple adiabatic (or WKB) approach, corresponding to the papers of Gargett & 
Hughes (1972) and Phillips (1973). We find that, although an instability seems to 
exist for quite general spectra, the growth rate is discouragingly small. We also 
indicate how this broad-band case relates to the incoherent three-wave interaction, 
and show how one can find simplified spectral transfer equations in the adiabatic 
limit (i.e. when a typical wavelength of the internal waves is much larger than a 
typical wavelength of the surface waves). 

2. Basic equations and assumptions 
I n  dealing with the mutual interaction between surface waves and internal waves 

in the ocean, we shall make a number of assumptions. Being interested mainly in the 
so-called lowest internal mode (see Phillips 1977, p. 21 l) ,? the following simple model 
of the ocean is chosen for convenience: 

(i) a mixed layer of thickness d ;  
(ii) below the mixed layer is a layer, T, of thickness d,, with non-vanishing density 

(iii) below the thermocline region the ocean is assumed to be homogeneous. 
If a typical wavelength of the internal wave considered is A,, and a typical wave- 

length in the spectrum of surface waves is A,, we shall also make the following 
assumptions : 

gradient (thermocline region) ; 

(iv) A, 9 d,, A, d, A, > A,; 
(v) we assume the surface waves to have a rather narrow spectrum. 
If z is the vertical co-ordinate, with z = 0 at the equilibrium level of the free sur- 

face, and 6(x, y ,  t )  the surface elevation, we take as a starting-point of our calculations 
the equations 

t It appears from a number of papers (e.g. Joyce 1974; Watson et al. 1976; Olbers & Herterich 
1979) that the strongest interaction occurs for the lowest internal mode. 
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a 2  

at2 
Z E T ,  - ( V 2 ~ ) + N 2 V & w  = 0, (2.3) 

z $ T ,  V2q5 = 0. (2.4) 
Here g is the acceleration of gravity, q5 is the velocity potential, w is the vertical 
velocity component, V, = {a/ax, a/ay, 0} ,  N ( z )  is the local Brunt-Vaisala frequency 
( N 2  = - (g/p) dpldz), and T denotes the thermocline region - d > z > - d  - d,. 

Equation (2.1) is obtained by taking a total time derivative of the Bernoulli eque- 
tion, and assuming that the atmospheric pressure is constant (see Phillips 1977, 
p. 34). Equation (2.2) is the kinematic boundary condition, and (2.4) is the condition 
of incompressibility (except in the region T where the potential flow assumption 
breaks down). Equation (2.3) is obtained if the Boussinesq approximation is applied 
(see Phillips 1977, p. 207), and the internal wave is assumed to have a sufficiently 
small amplitude for nonlinear terms to be neglected. Thus (2.3) implies an additional 
assumption to the ones listed previously. We shall next be concerned with internal 
waves growing as a result of an interaction with the surface-wave spectrum. By 
neglecting nonlinear terms, to obtain (2.3),  we have effectively neglected interactions 
between internal waves, such as parametric decay of the lowest mode into waves of 
higher mode number (Davis & Acrivos 1967; Martin, Simmons & Wunsch 1972). 

To develop equations (2.1) and (2.2) further, we shall assume that the surface 
waves have a rather narrow spectrum centred at the wave vector k, and frequency 
w(  = (gk)*). In  $ 6  we shall be able to relax this condition. Next we assume the wave- 
number bandwidth to be of the order Ek, where B is a small number taken to  be the 
r.m.s. value of IVtJ (wave steepness). This suggests the feasibility of the f llowing 
expansions for and q5 

g = c+i[Aeie+A 2 eZis+ ... +c.c.], 

q5 = $ + a[Bekz+is + B 2 e2kz+2ie + . . . + c.c.], (2.5) 

where 0 = k . x - w t ,  k = Ikl, and C.C. means complex conjugate. Here and { are 
real functions slowly varying in space and time, representing the perturbations 
brought about by (i) the internal wave, and (ii) by spacial non-uniformity of the 
surface-wave radiation stress (Longuet-Higgins & Stewart 1964). The complex 
coefficients A ,  A,, A,, ..., B, B,, B,, ..., are slowly varying on a time scale st and a 
space scale sx.f 

I n  the absence of inhomogeneity (and thus internal waves) it is found (Dysthe 
1979) that $ is of the order 8,. In  the present ocean model ((i)-(iii) above), due to the 
presence of internal waves, we shall allow for $ = O(s) .$  Developing (2.1) and (2.2) 
to  the third order in E ,  inserting (2.5) and using (2.4),  one obtains after some mani- 
pulation the following equations at the surface 

t In a co-ordinate system moving with the group velocity, the variation is on the time 

$ This ordering makes the lowest-order interaction tern1 kAa$/ax  in (2.6) below, of com- 
scale e2t. 

parable order of magnitude to the ‘self-interaction’ term preceding it. 
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where we have arranged for the x-axis to be along k. Here vg = g/2w is the group 
velocity and in (2.6) we have used the fact that /a$ /&/  < la$/axl at the surface 
z = 0.f The equation (2.7) is obtained by averaging the expanded version of (2.1) on 
the fast time scale. In  both (2.6) and (2.7) terms of order e4 and higher have been 
neglected. Noting that (2.4) is also valid for $, the equations (2.3), (2.4), (2.6) and 
(2.7) serve as our starting-point in the investigation of the interaction between surface 
waves and internal waves. In  the absence of inhomogeneity (T vanishes and equation 
(2.3) is absent) the system (2.4), (2.6) and (2.7) was shown to give an improvement on 
the nonlinear Schrodinger equation, as far as prediction on stability is concerned 
(Dysthe 1979). In that case, as pointed out above, the mean-flow velocity potential 
$ is only O(e2). 
- 

3. The transport equations 
When the amplitudes A and B are narrow-band random functions, (2.6) is still 

valid. We proceed to find a transport equation for the spectral function corresponding 
to A by applying the method of Alber (1978). 

Alber demonstrated that, if A was narrow-band and Gaussian distributed, the 
transport equations could be easily derived from an evolution equation for the 
amplitude such as (2.6). Using his method, we find that the two-point correlation 
function 

P = (4x1, t )  A *@2, t ) ) ,  

where ( ) means ensemble average, and * denotes complex conjugate, satisfies the 
following transport equation 

and 

Introducing the power-spectral density 

where p -= (pz.pv, 01, the transport equation for F(p, x, t )  is found by taking the 
Fourier transform with respect to r of equation (3.1 ), giving 

where the spacial derivatives of the sine operator are operating only on the terms in 
the square brackets (see Alber 1978). 

t This follows from (2.7) by observing that the second term on the left-hand side, as well as 
the right-hand side, is O(e3) ,  thus a$/& = O(e3)  at z = 0, while a$/ax = O(e2). 
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Equation (2.7) now becomes 

The equations (3.3), (3.4), (2.3) and (2.4) describe the interaction between the 
narrow-band spectrum F and the internal waves. They are valid when the correlation 
length scale of the surface waves, Lo,,, is larger than, or of the same order of mag- 
nitude as, a typical wavelength, A,, of the internal waves (or surface modulation), i.e. 

Lcorr 2 A,. (3.5) 

From (3.4) it is clear that the interaction of the kind we have taken to describe, 
depends on a spacial non-uniformity of the spectrum F(p,x,t), having a charac- 
teristic wavelength comparable to that of an internal wave. Why such non-uniformities 
should exist, and persist for a time long enough for an internal wave to grow, is hard 
to understand, unless it is created by some instability. This will be investigated in 
§§  4-6, which deal with the stability properties of an initially uniform spectrum. 

4. Stability analysis 

It is readily seen from (2.3), (2.4), (3.3) and (3.4) that a basic solution is 

4.1, Dispersion relation 

- 
F = Fo(p), $ = w = 0. (4.1) 

This solution represents a homogeneous distribution of the surface-wave spectrum. 
The radiation-stress-induced force, represented by the right-hand side of (3.4), then 
vanishes, and thereby the coupling to the internal waves.? 

To investigate the stability of the basic solution (4.1), we assume that $ and w are 
small perturbations, and perturb F and IA)2 in the following manner 

JYP, x, t )  = Fo(P) +f,(P, x, t ) ,  

where all perturbed quantities are assumed small, such that (3.3) can be linearized. 
Taking a Fourier component 

exp i ( ~  . x - Qt) 

of the perturbed quantities, one obtains from (2.4) and (2.3), and the boundary 
condition a$/& = 0 when z-f - XI 

- [ A  cosh KZ - B sinh K Z ,  above T, 
$ =  

\CexpKz, below T, 
and 

where the factor exp i(u . x - f i t )  has been suppressed. 

Olbers & Herterich (1979). 
t There will still be a coupling to a higher order. than that considered here, as shown, e.g., by 
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To lowest order in the small quant,ity Kd,, we obtain from (4.3) the following jump 
conditions for w across the thermocline region (see Phillips 1977, p. 212) 

W ( - d ) - W ( - d - d l )  = 0, 

where 
9 = - g S , N 2 d r  1 

P 

is the relative density increase through the thermocline, typically of order 10-3 for 
the ocean. Inserting (4.2) in (4.4), A and C can be expressed in terms of B (again to 
lowest order in Kd,) as 

and 

where 

A = -B H [1+(1--%$) c o t h ~ d ] ,  

As noted previously the second term on the left-hand side of (3.4) is formally of 
order s3 and should be neglected (for the situation considered in this paper the ratio 
between the first and second term is of the order Sp/p). The boundary condition for 
3 at z = 0 thus becomes 

i a$ w l -  
--(0) = i-- IAlf = -B .  
K az 2 K  

We note that, in the absence of the surface-wave spectrum, the dispersion relation 

Using the results (4.2), (4.5) and (4.6) in the linearized version of (3.3), one finally 
for a freely propagating internal wave of the lowest mode is H(Q, K)  = 0. 

obtains the following dispersion relation for SZ and K = {Z, m, 0} 

where 

and H(SZ,K) is defined in (4.5). The integral is defined for Im SZ > 0 (see Alber 1978), 
i.e. for wave instability. When Im SZ < 0, Q(Q, K )  must be interpreted as the analytic 
continuation of the function into the lower half of the complex SZ plane (cf. appendix). 

Since the denominator of the integral Q only contains a certain linear combination 
of pr  and p,, Q can be reduced to a single integral by introduction of the variables pt 
and p,, given by p ,  = p .i6, and p,, = p .i,,, where the unit vectors ig and i, are given by 

i -  I =  (4.8) 
t - (cos28+4sin20)t’ (cos28+4sin20)*’ 

{cos 8, - 2 sin 8, O} . (2 sin 8, cos 8, O }  
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and 6' is the angle between k and K. Note that 

{ldv,/dk, mv,/lc, 0} = dv,/dk{l, - 2m, 0) 

which is a vector parallel to is, and it. i, = 0. Q can now be rewritten as follows: 

where 

and 

491 

(4.9) 

4.2. Stability of surface-wave modulations 

The equation (4.7) has the form of a dispersion relation of two weakly coupled wave 
modes, where the coupling term on the right-hand side is O ( E ) .  Thus to  lowest order 
they decouple into a dispersion relation 

H ( Q ,  K )  = 0, (4.10) 

which describes the propagation of an internal wave of the lowest mode, and a dis- 
persion relation 

1 + Q(Q, K )  = 0, (4.11) 

which we would expect to describe the surface-wave modulation. Comparing with 
Alber (1978), we find that this is indeed so. 

Let us first, for the sake of completeness, recall some of the information which can 
be extracted from (4.11) (see Alber 1978). 

I n  the limit when the spectral width tends to  zero it is readily shown by inserting 
Fo(p) = m&(p) in (4.11) that one obtains the well-known result for modulation 
instability of a monochromatic wave train of amplitude a,: 

Q = V , l &  (L(L+w(kao)2))+ (4.12) 

if one makes the identification 2m = a;, where L is defined as 

(4.13) 

According to  (4 .12)  instability occurs (Im R > 0 )  when K f {I, m, 0) belongs to 
the domain between the hyperbola 2m2 - l 2  = 8k2(kao)2, and the asymptotes 
12 = 2mz2, on the K plane. Note that one has stability with respect to all perturbation 
wavenumbers K whose direction is such that the angle 8 between k and K is larger 
than 35.26". 

For the two-dimensional Gaussian spectrum 

Alber found that, as the spectral width 
reached where the modulational instability disappeared altogether. 

increased, some critical value was finally 
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It is somewhat inconvenient to refer the distribution Fo(p) to the co-ordinate 
system &?,I. Since the centre of our wave spectrum is at the wavenumber k, and the 
x axis therefore is a preferred direction (henceforth referred to as the ‘wave direction’), 
we shall restate some of Alber’s finding for a double-Gaussian 

From (4.14) one easily finds that 

where CT? = (a: + 4g;tg26)/( 1 + 4tg26), and 6 is the angle between k and K. 

One of Alber’s conditionst for stability then becomes 

The condition (4.15) is satisfied for all angles 6 ( < 35.26’) if and only if 

a, > 2k(k2izp)i. 

(4.14) 

(4.15) 

(4.16) 

Thus (4.16) is the condition for complete suppression of the modulational instability. 
The right-hand side of (4.16) is equal to 2-4 times the wavenumber 1,odofthefastest- 
growing mode along the ‘wave direction’, in the limit of vanishing spectral width. 
Thus (4.16) can be written 

flz > lmod/2* (TO.  ( 4 . 1 6 ~ )  

Another feature which comes out of Alber’s analysis for the case of finite spectral 
width is that, if (4.16) is satisfied, the corresponding modulational perturbation is 
generally damped. This contrasts the case of a spectral line (Fo(p) = IA(,2S(p)), 
where a perturbation is either unstable or neutrally stable. The damping is due to 
phase mixing, and the mechanism is analogous to that of Landau damping of electro- 
static Langmuir waves in a plasma of finite temperature. 

Note from (4.16) that only ax, i.e. the spectral width along the ‘wave direction’, 
enters the stability criterion. This implies, for example, that av can be arbitrarily 
small without upsetting the stability. 

Lastly, under the assumption that the spectral width is large enough for the surface 
waves to be modulationally stable, we shall try to identify modulational perturba- 
tions that are likely candidates for interaction with the internal wave. To lowest 
order the frequency of the modulational perturbation of wave vector K is V~.K.$ 
Since the phase velocity of the internal wave is much smaller than vg (for surface 
waves of reasonably long wavelength), interaction can only take place when 8, the 
angle between k and K, is near &r. 

We also note that the coupling between the two modes is a very weak one, explicitly 

t See Alber (1978), equation (5.3). 
$ This means that mode coupling occurs roughly when the component of the group velocity 

in the direction of modulation is equal to the phase speed of the internal wave. 



Modulational interaction between gravity waves 493 

demonstrated by the smallness of the coupling term on the right-hand side of (4 .7 ) . t  
For any significant interaction to be possible the modulational mode must have a 
negligible damping when considered as a ‘free’ mode (i.e. satisfying the dispersion 
relation (4.11)). It is not evident that such a modulational perturbation exists, so we 
try to demonstrate this by choosing an example which is simple enough for explicit 
calculations. Choosing for the spectral distribution the ‘water bag ’ model 

(4.17) 

it is shown in the appendix that the dispersion relation (4.11) has an undamped 
solution, for K~ < 0 (i.e. for 8 > 35.26”) given by (A4).  It seems reasonable that one 
should get an undamped (or negligibly damped) modulational mode, also for a wider 
class of spectral distributions, having the characteristics that po(p5)  is negligible 
outside some finite domain. 

At this point it is perhaps appropriate to note that, since we are interested in modu- 
lations moving nearly perpendicular to  the ‘wave direction’, p,,(pt) is actually the 
directional distribution of the wave spectrum. 1 

For the directional distribution of swell at a long distance froni the storm area, the 
above-mentioned models are perhaps not so unreasonable. This is because propagation 
over a large distance acts as a directional filter on the original distribution in the storm 
area (see, for example, Kinsman 1965, p. 405), as indicated by figure 2. 

5. Mode coupling 
Due to the smallness of the coupling term on the right-hand side of (4.7),  the solu- 

tions of the dispersion relation are well approximated by the solutions of the two 
equations (4.10) and (4.11). Denoting a solution of the former by R I ( ~ ) ,  and of the 
latter by R M ( ~ ) ,  we note that the approximation breaks down near the points K,, in 
the K plane, where C&(K~) = RI(~,,)  2 Q,,. This is exactly where the interaction, or 
mode coupling, takes place. 

To obtain an approximate solution of (4.7) valid near Ro, K,,, we evaluate the 
right-hand side at  Q,,, K,,. On the left-hand side we keep only the first two terms of 
the Taylor expansions of H(R, K )  and &(a, K )  around R,,, K ~ .  This gives the equation 

where 

t Note that the right-hand side of (4.7) is of order 6 coszO, which is especially small when 
0 is near 471. 

$ Note that the distribution of the surface-wave spectrum along the ‘wave direction’ is of 
minor importance as long as it is broad enoJigh to be stable. From (4.5) it 1s seen that, for 
0 = $71, it is along the negative-y axis. Thus F,,(pg) gives the spectral distribution perpendicular 
to the ‘wave direction’. For a narrow spectrum this is approximately the same as the directional 
distribution. 
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f (6) 

t 

D 

e p _ _ _ _ _ _ _ _ _ _  --* A- -;a fa :i 
FIGURE 2. Sketch indicating how the directional spectrum near a storm area, f ( @ ,  is ‘filtered’, 

by propagating a distance D ,  into a spectrum f,,(e). 

and - 
W = R-Ro, k = U - U ~ .  

Since 
a v q o  = ( 2 v o / W  @ / P  ’ 0 

ag/anIo < 0. 
(5.1) predicts instability when 

- 
When (5.2) is satisfied, the maximum growth rate occurs for k = 0 (i.e. u= u0), 

and is given by 

For the simple ‘waterbag’ model (4.17) of the directional spectral distribution, it 
is readily shown that aQ/aRIo is negative for the branch Q&(u) (see A4)), and (5.3) 
can be calculated explicitly. Doing this, and taking into account that IZo/moJ < 1 as 
explained below, one obtains 

(5.4) 
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FIGURE 3. Sketch of resonance curve in the K ~ ,  K~ plane for the modulational interaction. 

where 
G c,- = (cub,)+ ( zo) ()+(a/mo)2+u/mocothc)~sinhc’ 

(mod e*d)t 

sinhimod ’ 
P(m,d) = 

and c = 2um,/u~, where u, = 2k(k21G)*  is the critical spectral width introduced 
in ( 4 . 1 6 ~ ) .  

Next we want to comment on the possibility of satisfying the interaction condition 

Generally Q&(K), as given by (A4), is much larger than the frequency Q I ( ~ )  of the 
internal wave. It is seen from (A6), however, that Q& has a zero near 8 = am (0 is the 
angle between k and K ) .  Thus, in the neighbourhood of &r, Q& varies (monotonically 
as a function of 0) from zero to values larger than Q I ( ~ )  (which is independent of 8).  
If therefore some K, is given, and thereby 0, = Q I ( ~ o ) ,  it is always possible to find a 
value of 8 near in such that (5 .5 )  is satisfied. Then to a good approximation 1, can be 
expressed as a function of m, as 

Q;t;(K,) = QIW,). (5.5) 

which has been sketched in figure 3 (for the case kdSp/p > (u /k)2+2k2(AIi  where 
the resonance curve crosses the m axis). 
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Investigating the growth rate, we first note that y depends rather critically on the 
spectral energy and angular spread of the surface-wave spectrum through G(c,  v/m,) 
(see figure 4). To have any appreciable growth, c must be of order unity or less. This 
introduces the following restriction on the wavenumber m, (c < 6 say) 

where A8 = 2 v / k  is the angular width of the surface-wave spectrum. 
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FIGTJRE 6. Relative growth rates for the modulation81 interaction 8,s a function of K,,z. The 
parameter values of ((Vl)"4, A 0  and kd for the different curves is given in table 1. 

Curve no. 1 2 3 4 5 6 

((Vl)"+ 0.066 0.06 0.05 0.05 0.03 0.03 
A 0  31" 28" I 1" 17' 9" 11" 
kd 2 4 2 4 2 4 

TABLE 1 

On the other hand, the shape of the function P(mod) (see figure 5 )  tells us that 
mod should not be too large ( < 3, say) and not too small ( > 0.05, say). Combining 
these requirements, we have roughly the following restriction 

I n  figure 6 we have calculated the growth rate (or rather y / w )  as a function of 
~ ~ d ,  for six different sets of values of the parameters { k 2 ~ o } * ,  A 0  and kd.  

Taking the periods of the surface-wave spectrum to be centred around 8 s, the 
minimum growth time corresponding to the different curves in figure 6 ranges from 
approximately 6 hours to 48 hours. 

It seems to follow from the numerical examples that rather high values of the 
r.m.s. wave steepness, and narrow spectral distributions are needed to obtain growth 
times less than a day. 

Finally we note that the description of the last two sections is a linear stability 
analysis of the 'equilibrium' solution (4.1). Consequently i t  will not be valid once 
the spectral perturbation becomes comparable to the initial spectrum. 



498 K.  B. Dylsthe and K .  P. D m  

6.  ‘Adiabatic’ case 
In the previous sections we have considered interaction between internal waves 

and a narrow spectrum of surface waves. Physically that situation probably corres- 
ponds to the swell spectrum at a considerable distance from a major storm area. 

In this section we address ourselves to the question of interaction between an 
internal wave and a spectrum of fairly broad bandwidth as found near, or in, a storm 
area. This problem in its generality is, of course, a formidable one, and its solution is 
far beyond the modest scope of this paper. If, however, our main interest is the 
interaction with very long wavelength internal waves, some progress can be made. 
By long wavelength we mean long compared to wavelength in the surface-wave 
spectrum. Since the time scales associated with the internal wave (wave period, and 
growth time) are much larger than the wave periods in the surface-wave spectrum, 
it is to be expected that some sort of ‘adiabatic’ approximation can be used. 

A fairly general transport equation can be written as follows 

where J(k, x, t )  denotes the action density equal to the spectral energy density, 
divided by the intrinsic frequency ( g k ) i  (see Willebrand 1974). 

On the right-hand side of (6.1) are three source terms which tend to change the 
wave spectrum. S,  is the input from the wind, Scoll represents the statistical four- 
wave interactions between surface waves, and s, represents the loss due to breaking 
and turbulent dissipation. 

We shall next assume that some quasi-steady state has been reached in which the 
right-hand side of (6.1) is unimportant (i.e. the rate of change of J due to the right- 
hand side is assumed to be on a larger time scale than that of the effect we are going 
to study). The remaining homogeneous equation 

where 

W = (gk)i  + k. vh$ + S(k, k’) J(k’) dk, f S 
describes how the spectral action density J adj nsts adiabatically to slow variations 
in the average surface flow Vh3. t  Note that (6.2) is equivalent to the canonical equa- 
tions of geometrical optics. The last term in the expression for w in (6.2) is the averaged 
nonlinear frequency shift for the spectral component k, due to the presence of the 
rest of the spectrum (see Longuet-Higgins & Phillips 1962; Willebrand 1974). 

The surface flow vh$) on the other hand, is influenced by non-uniformities of the 
spectral distribution. A straightforward generalization of (2.7) gives 

where again the term a2$/8t2 has been neglected. 

t We have again omitted the averaging sign of 3. 
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While in the narrow-band case of the previous sections the nonlinear frequency 
shift (implicitly present through the first term on the right-hand side of (2.6)) played 
an important part, this is no longer expected to be so in the broad-band case. The 
reason is that, in the narrow-band case with a small variation of group velocities 
through the spectrum, the presence of a small nonlinear frequency shift makes it 
possible to have an undamped, or very slightly damped, modulational mode. I n  the 
broad-band case, however, there is a large variation of group velocities through the 
spectrum, so that any broad-band modulations of the spectrum will soon be wiped 
out by phase mixing, regardless of any small nonlinear frequency shift. For this 
reason, we are going to neglect the last term in the expression for w in the following. 

The system of equations (2.3), (2.4), (6.2) and (6.3) now describes the interaction 
between an internal wave and a surface-wave spectrum. A basic solution to the 
system is again a uniform spectrum J,(k), and no internal wave $ = w = 0. 

Investigating the stability of this solution, we perturb as follows : 

J(k, X, t )  = J,(k) + J,(k, X, t ) .  

exp i ( K  . x - Qt) 

(6.4) 

Taking again a Fourier component 

of the perturbed quantities J,, 
0 4, the same expression for $ and w,  where B is now given by 

and w, one obtains, by the same arguments as in 

K ss 1 a$ B = --(0) = i-. kJ,dk. 
K az 

Using the same procedure as in $4,  the following dispersion relation is readily 
deduced 

where H is given in (4.5). Comparing (6.6) and (4.7) we note that, in contrast to the 
narrow-band case, there is no longer a modulational mode (for the physical reason 
explained above). We are left with the internal-wave mode, which is weakly coupled 
to the surface-wave spectrum. 

By assuming that Q = Q,(K)  +6Qj where l6Ql < Q,, we obtain by iteration the 
following approximate solution of (6.6),  

+ i T / / ( ~ . k ) ~ E * s d  K ak dk]. (6.7) 

Note that the integral (6.6) is to be interpreted in the same way as for Q in (4.7). 
Thus the growth rate, or damping, becomes 

The contribution to the integral thus comes from the curve in the k plane where 
the resonance condition Q,(K) = K . aw/ak is satisfied. Bearing in mind that vg is 
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much larger than QI/K (except perhaps for the small-wavelength part of the spec- 
trum), we can write the resonance condition approximately 

where k,, and k ,  are the components parallel and perpendicular to K, respectively. 
Using (6.9) and the expression for aH/aQ, (6.8) can be simplified to 

(6.10) 

where k,, is given as a function of k, by (6.9). 
Considering fairly general spectra J,(k), it can be shown from (6.10) that one can 

always get y > 0 when the direction of the internal wave is chosen within some 
finite angular domain with respect to the main direction of the spectrum ('wind 
direction '). 

The growth rate, however, is discouragingly small for realistic spectral energy 
densities. 

To see the connection between this rather negative result and the findings of Olbers 
& Herterich (1979) cited in the introduction, we start from a spectral transfer equa- 
tion, similar to their equation (3.5) (see also Davidson 1972, cha. 13) namely 

x 8(K-kl+k2)6(~r(K)-~(kl)+W(k2))dk~dk2, (6.11) 
s a 

-J1(K) at = 47f Iy::c,ka)12{J1(K) (J(k2) - J(k1)) -J(k,) J(k2)) 

where JI and J are the action densities of the internal- and surface-wave mode, res- 
pectively, and F::z, kz) is the coupling coefficient of the three-wave interaction between 
an internal wave K ,  W(K)  and two surface waves k,, w(kl) and k,, o(k,).t 

I n  the adiabatic limit of (6.11)) when K < 1 k,l , JkJ,  we have approximately 

s - a JI(K) = y(~)J ' (~) -47f  ~ ~ ~ ~ $ + , , k . ~ ~ 2 J ( k ' ) ~ ( k ' + K ) S ( ( ~ I ( ~ ) - - K .  
at 

If the second term of the right-hand side of (6.12) is neglected one obtains the same 
result as (6.8) when the coupling coefficient is identified as 

(6.13) 

When, however, J 9 JI, it is seen from (6.11) that the last term of the bracket { } 
dominates. This is exactly the term that Olbers & Herterich use to calculate the 
energy transfer to the internal-wave spectrum. I n  the adiabatic limit (neglecting the 
first term on the right-hand side of (6.12) and using (6.13)) we have 

J(k) J(k + K) dk. (6.14) 
(K . k)2 6( W(K) - K . aw/ak) s K sinh2Kd aa/aQ 

a 
z J I ( K )  = -7f 

t Note that the coupling coefficients refer to a situation where the complex amplitudes A 
of the waves are chosen such that IA l 2  is the action density. 
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We conclude that for the broad-band case studied in this semion the ‘modnlational’ 
mechanism (c) is contained in the incoherent three-wave interaction mechanism ( b ) .  
The main contribution to  the energy transfer to the internal-wave spectrum (for 
J 9 J’) comes from ( b )  and not from (c). 

This does not mean that the equations (6.2) and (6.3)’ describing the modulational 
effect in the broad-band case, are useless. When Consideration is given to the more 
general equation (6.11), the system (6.2) and (6.3) can be used to  simplify the calcula- 
tions in the adiabatic limit as shown by (6.14).t  Another example is provided by the 
calculation of the distortion of a surface-wave spectrum by a well-developed spectrum 
of internal waves. I n  the adiabatic limit the equation describing the slow distortion 
of J ( k , t ) ,  is simply a diffusion equation (in k space). The details of derivation are 
very similar to the derivation of the so-called ‘quasi-linear’ plasma theory (see 
Davidson 1972; and also Vedenov, Gordeev & Rudakov 1967) and will not be pre- 
sented here. The result is the equation 

(6.15) 

where the ‘diffusion’ tensor D is given in terms of the spectrum of surface induced 
current (u(K) u*(K)) (due to the internal waves) as 

D = 77 ( k . K ) 2 ( U ( K ) U * ( K ) ) d K .  s 
7. Discussion and conclusions 

We have presented theoretical models for a coupling of an internal wave of the 
lowest mode with a surface-wave spectrum. 

As shown schematically in figure 1, the interaction can be interpreted physically 
in the following way: 

(i) The non-uniform surface current induced by an internal wave causes refraction, 
and thereby modulation of the surface-wave spectrum. 

(ii) This modulation introduces a non-uniform radiation stress, and thereby forces 
doing work on the internal wave. 

I n  $ 3  2-5 we studied this interaction for a narrow-band spectrum, and found that 
it could be considered as a mode coupling between a modulational mode, and an 
internal wave mode. An instability may occur when the angular distribution of the 
surface-wave spectrum is such as to support modulational modes nearly perpendicular 
to the main surface-wave direction. I n  that case a growing modulation and internal 
wave propagate nearly perpendicular to the wave direction, with the same frequency 
and wavenumber. I n  order to present our analysis of the interaction as clearly as 
possible, we have chosen a rather simple model for the angular distribution of the 
surface-wave spectrum. This permits us to calculate the growth rate explicitly. I n  
order to do the calculations for a wider class of angular distributions, a numerical 
approach will probably be necessary due to the complexity of the dispersion relation 

(A 1). 

t The usefulness of this procedure does of course depend on the validity of neglecting the 
nonlinear frequency shift, as explained above. 
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The numerical examples seems to indicate that rather large r.m.s. wave steepness, 
and a narrow angular distribution are needed for growth times less than a day (for 
the conditions of the seasonal thermocline, 6p /p  N d N 50-100 m). For example, 
taking ((Vc)2)* = 0.06, A6 = 30°, and lcd = 4, the growth time is roughly 6-8 hours, 
while, for the values 0.03, 10" and 4, the growth time is roughly 2 days. 

This probably indicates that the conditions for an appreciable growth rate is too 
limiting for the instability to be of geophysical significance. 

For the broad-band case discussed in 5 6, we find that the growth rate of the modu- 
lational instability is very small indeed. We established the connection with the 
incoherent three-wave interaction ( b ) ,  and showed that the modulational mechanism 
(in the broad-band case) is contained in (b ) .  

This work was done while the authors were visitors at the Department of Applied 
Mathematics and Theoretical Physics, University of Cambridge. We are grateful for 
the hospitality during that period. 

Appendix 

(4.17). For the stable case (Im !2 < 0) &(a, K) is defined as? 
In  this section we solve the dispersion relation (4.11) for the simple spectrum 

When Im s1 = 0, the integral is to be interpreted as the Cauchy principal value, and 
the factor 2 of the square bracket should be deleted. 

For the 'water bag' model (4.17) the integral in (A 1) can easily be evaluated, and 
the square bracket vanishes provided 

The dispersion relation (4.11) then becomes 

which is solved to produce 

!2& = v,l f P ( ; I ~ ~ + c ~ ~ - a ~ ~ c o t h c ) ~ .  (A 4) 

It is a simple exercise to show that in the limit g - t 0  (A 4) tends to the result (4.12) 
when the identification 2 1 3  = a: is made. 

Using (A 4), the condition (A 2) can be put in the form 

)(x2+1-2xcothc)*fx( :> 1, (A 5 )  

where x = ~ ~ / 2 a .  With cothc > 1 (A 5) is seen to be satisfied for x < 0, i.e. fow5 < 0. 
This is exactly the domain of prime interest to us since K~ < 0 when 8 > 35.26". 

t Alber (1978) seems to have missed out the factor /f-' of the square bracket in (A 1 )  
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When 6' is near in, (A 4) can be written 

Lastly we note that, when 6' is near in, c can be expressed as follows 

c = 2 r m / a i ,  (A 7 )  

where a. is the critical spectral width in the wave direction as defined in (4.16a). 
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